
x EN A i ra

ISSN.0265-2919

a
30)

‘gaia pea

S

n BIS Ulelieclies
IRSI Aus $195 NZ $2.25 SARI95 Sing $4.50 USA & Can $195,

GRAND FINALE Our music series comes
to an end with an overview of the mostup- 589]
to-date electronic equipment

HOT PROPERTY An infrared joypad that 5Q(
provides remote control for games action

ODDS-ON FAVOURITE We review
Classic Racer, a challenging game for Oric 600
and Atmos owners

VARIATIONS ON A TURTLE Defining
variables is as important in LOGO as any AQ3
programming language. We learn how to
implement them

FILE PROTECTION TO FILE
TRANSFER A weekly glossary of
computing terms

PROGRAMMING PROJECTS

CHARACTER FORMING We show how
easy it is to create user-defined characters on ARB
the Spectrum and BBC Micro

FINE TUNING Valuable tips for saving
programming time and making the most of OG
your memory space by writing more efficient
code

CHANGE OF ADDRESS Indexed
addressing is an extremely important idea BOR
for the machine code programmer to master

MOTOR CONTROL Using the buffer and
output boxes that we have constructed we BR45
write the software to control a Lego car

| INSIDE

REFERENCE MANUAL A reference card BACK
containing the Z80 instruction set COVER

Next Week
© Continuing our occasional
series on portable computers,
we review Epson’s PX-8, the
super lap-held with CP/M,
telecommunications and RAM
disk

@ We begin a large-scale
survey of micros in movement
— robotics at work and play ~““

© Our workshop feature
introduces reversed polarity
Switching.

COVER PHOTOGRAPHY BY PAUL CHAVE

Editor Jim Lennox; Managing Editor Mike Wesley; Art Director David Whelan; Technical Editor Brian
Morris; Production .Editor Catherine Cardwell: Art Editor Claudia Zeff; Chief Sub Editor Robert
Pickering; Designer Julian Dorr; Art Assistant Liz Dixon; Editorial Assistant Stephen Malone; Sub Editor Steve
Mann; Researcher Melaiie Davis; Contributors Geoff Bains, Harvey Mellor, Mike Curtis, Steve Colwill, Rory
Forsyth, Graham Storrs; Software Consultants Pilot Software City; Group Art Director Perry Neville; Managing
Director Stephen England; Published by Orbis Publishing Ltd: Editorial Director Brian Innes; Project Development
Peter Brookesmith; Executive Editors Chris Cooper, Maurice Geller; Production Controller Peter Taylor-
Medhurst; Circulation Director David Breed; Marketing Director Michael Joyce; Designed and produced by
Bunch Partworks Ltd; Editorial Office 14 Rathbone Place, London W1P 1DE; © APSIF Copenhagen 1984; © Orbis
Publishing Ltd 1984: Typeset by Universe; Reproduction by Mullis Morgan Ltd; Printed in Great Britain by Artisan
Press Ltd, Leicester

HOME COMPUTER ADVANCED COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50
USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER ADVANCED COURSE - Copies are obtainable by placing a regular
order at your newsagent, or by taking out a subscription. Subscription rates: for six months (26 issues) £23.80;
for one year (52 issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street,
Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.
Back Numbers UK and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER
ADVANCED COURSE. Back numbers, Orbis Publishing Limited. 20/22 Bedfordbury, LONDON WC2N 4BT at cover
price. AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers,
Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW
ZEALAND, EUROPE & MALTA: Back numbers are available at cover price from your newsagent. In case of difficulty
write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER ADVANCED COURSE - UK and Eire: Please send £3.95 per binder if you
do not wish to take advantage of our special offer detailed in Issues 5, 6 and 7. EUROPE: Write with remittance of
£5.00 per binder (incl. p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT7.
MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME
COMPUTER ADVANCED COURSE BINDERS, Miller (Malta) Ltd, M.A. Vassalli Street, Valletta, Malta. AUSTRALIA:
For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED
COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The binders supplied are
those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from
HOME COMPUTER ADVANCED COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595, Wellington. SOUTH
AFRICA: Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME
COMPUTER ADVANCED. COURSE BINDERS, !ntermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to
keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at
any time when circumstances dictate. Binders depicted in this publication are those produced for the UK market
only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be
Subject to import duty and/or local taxes, which are not included in the above prices unless stated.

In this final part of the series, we look at
some of the advanced systems that have
appeared since electronic music began to
incorporate digital technology. Many of
these systems cost thousands of pounds, but

| there are signs that, as research costs are
recouped and competition increases, drastic
price reductions are on the way:

The single most significant recent aevelopmient| in
electronic music has been in the area of digital
recording. Not only has sound recording quality
improved immensely, but the whole meaning of
the word ‘recording’ has changed to embrace a
number of different techniques. If we now
understand recording to mean ‘the digital
encoding of sound and its organisation into music’,
then we can begin to grasp what is happening to
music in the 1980s.

Since the Second World War, sound recording
on magnetic tape has been the norm, with formats
ranging from the tiniest microcassette up to the
large spools of 24-track tape used in professional
recording studios. When a recording is made on
magnetic tape, the minute particles of metal oxide
on the tape surface become rearranged in complex
patterns that are analogous to the sound wave-
forms they represent. As the tape passes the
playback head of a recording device, these
patterns are converted into chains of electrical
voltages. These voltages are then fed to the
loudspeakers, which reproduce the sound

_recorded on the tape.
Because the arrangement of particles may be

fairly accurately judged in relation to the tape
playback head, it is quite easy to find where a
particular sound is on a piece of magnetic tape, so

razor blades has become an important skill to be
acquired by sound engineers.

In digital recording, sound is encoded
numerically along the tape, and the playback head
becomes a digital-to-analogue converter. The
loudspeakers are powered in the same way as
before, but they use voltages generated by the
D/A converter. Provided there is sufficient data
for conversion,
reproduction that is greatly superior to that
achieved with magnetic tape. And, as long as the
data remains intact, the tape may be copied
digitally hundreds of times with no loss of quality.
With magnetic tape, however, each ‘generation’ of
copying adds hiss and distortion to the recording.

This type of noise degradation has been a
familiar problem for sound engineers for many

. the splicing and editing of tape with demagnetised

digital tape can produce

HARDWARE COURTESY OF SYCO SYSTEMS.

IAN McKINNELL -

one eofttie most ha Hin "tenses
the world. Apart from Ae, on se $e ER NS .
usual synthesiser functions, ~ =~ wong Pe ce fe
the machine has the capacity — .
lo. cl u un 10 Megabytes of “f e yg

e@ eer «

PO LPE ELLE LE LEE PEER LS PLOY EAP EEL IIE LEE ID ORELL LOD PEL ELES ODI I EEE DIE

be fo, wh ay EP Ee, Te Py i aces See SESE CA es eS ;
=e ee te A os a
aes

EE RPP OLDE ESE EE KE REPLI I IEE SLL O OIE ES

Fairlight CMI ee f >
The: Fairlight CMI was one of
the first computer: music: eee
systems. The Fairlight's S/ ele 6
bd system ismenue

AVallowing.av
> oN bose Ls

aMmana- RAY | Aah we Tape ‘ x

ne Yamriatia: KXo’s/V ad ee
. interface provides alink oe

. + between synthgsisers and the Lf
Md Yamaha CX5, This device will

also be used tointerface the
ny Yamaha MSX home computer

when it arrives in the United

6

The a sich, se
PYF PLL SPREE L EI IIG on PPP REM, IPP P LOI IIE EE LES IIL PPE ILLES LISI NSE ELR re fee PPP PLL LEDGE EY PPPS EE RPP PRES

¢, machine from-Emu ie Ae 1h Cao meee os Be 1%
¥ " a te a

ee eo SH ee F
2

i ET 5 * Ghas smemory-capacity'o VETS pce)
PELE TPE EEL ELE PELE TEE PLE PIE EELS, LLOPI RIES: Rp eee. PROS re PEL PIS EEL IE EI EEE LIL L EEE OL IL LE EE LL PEEL LISI IEEE ERE

xn 10,088 notes apc 64 aise
| pe There are also facilities to

me allow the insertion of

., additional ROMs that provide
“additional effects such as
Latin. or ula percussion

MARY EVANS PICTURE LIBRARY

CALLIGRAPHY BY BERNARD JENNINGS

Past Echoes
This piece is taken from ‘New
Atlantis’, a vision of utopia
written by Francis Bacon (1561-
1626) . His descriptions of

sounds seem to predict the
extraordinary power and
versatility of today’s electronic
music

| APPLICATION /MUSIC

years. Now that this has been overcome, many top
recording studios have installed 24-track digital
tape recorders. Using these, the sound
reproduction is so accurate that engineers find it
impossible to ascertain whether a sound coming
from the studio monitor speakers is played by a
musician in the recording area or is produced by
the playback of a digital tape. But new problems
have emerged: it is no longer possible to ‘see’
where sounds are located on a digital tape, which
makes editing more difficult, and splicing is
becoming an outmoded skill. Another difficulty is
‘studio noise’, an unwanted and usually unheard
characteristic of some audio equipment. Magnetic
tape was not sensitive enough to register this, but
digital recordings tend to pick it up.

While 24-track recording is still the prerogative
of expensive studios, single-track digital recording
of the same quality is available to any owner of a
Betamax home video recorder. Video tape is a
digital medium, and as such it can be used to
encode any type of data. The Sony PCM (Pulse
Code Modulator) is a unit that converts a
Betamax video recorder into an audio tape
recorder. This unit, which costs a few hundred
pounds only, has the potential to make similarly
sized analogue recorders obsolete.

Digital sound encoding, or sampling, is at the

582 THE HOME COMPUTER ADVANCED COURSE

heart of the Fairlight CMI (Computer Musical
Instrument), one of the best known of the
advanced systems. The Fairlight can sample any
sound for a duration of up to two seconds, and it
will then reproduce that sound across a pitch range
of six octaves. Sampling is a real breakthrough in
electronic music. For years, engineers and
musicians have been trying to simulate the sound
of strings or woodwinds by using synthesisers, and
in some cases they have come very close to
reaching their goal. But sampling will provide not
only a remarkable reproduction of the sound of
‘strings’, it can produce the sound of a particular
violin. Furthermore, in some cases, it can
reproduce the sound of a particular player in a
particular room. In the first article in this series, we
saw how the musique concréte composers of the
1950s spent weeks splicing together tiny snippets
of recorded tape, eventually producing large-scale
pieces. The computer manipulation of samples
would now enable a composer to produce similar
results in minutes.

SAMPLING INSTRUMENTS
A sampling instrument like the Fairlight can
overcome the natural limitations of musical
instruments. For example, it is quite easy for a
flautist to produce a warm, breathy tone quality at
the lowest end of the flute’s range. However, it is
impossible for a player, no matter how skilled, to
achieve this type of sound two octaves higher at
the top end of the instrument’s range — the
physical design of the flute prevents this. A
Fairlight user, on the other hand, can sample the
low, breathy tone and then transpose it upwards by
two octaves on the keyboard. The result will still
sound like a flute, but it is a type of flute that
cannot exist in the ‘real’ analogue world.

The Fairiight can supply a screen display of any
of its sampled sounds, which are stored on 8in
disks. Different characteristics of an individual
sound may be examined in succession: it is often
easier to tell what is ‘wrong’ with a particular
sound by looking at it rather than listening to it.
Many sounds need to be longer than their original
two-second sample duration. By seeing how the
different waveforms inside the sound are related, a
point can be selected at which the sound could be
made to start /ooping, or repeating. If the right
point is selected, this will give the illusion of
genuine continuity. Analogue sound doesn’t
behave like this, of course, so looping can give an
unusual dimension to the music being produced.

The Fairlight user has two ways of inputting
music, apart from playing in ‘real time’ at the
keyboard. The first method, known as ‘Page R’,
gives a five-line stave display, and the user enters
notes onto the stave from the music keyboard.
Any timing errors are ‘tidied up’ automatically by
the computer in accordance with the metre or time
signature that the user has already specified.

The second method is to use an MCL (music
composition language). The Fairlight MCL
demands that every note-event should be entered

Seereaieaeeenemaneteae:

ed

via the alphanumeric keyboard, but it enables time
and accentuation to be changed on a note-for-
note basis. The Fairlight has an eight-voice
capacity, so a user may enter eight different

_ Sequences, played by eight different sounds or
‘instruments’. Each of these may be slightly out of
time — by a matter of milliseconds — with the
others, and the whole performance is co-
ordinated by the Fairlight’s internal clock.

It may well be asked what use it is for music to be
performed in this ‘inaccurate’ way, especially by a
computer. The answer is that people never play
exactly in time, and one of the elements of
performance — especially among jazz and some
classical players — is the way in which a musician
may ‘bend’ musical time when executing a
passage. An operating system like the Fairlight
provides a way in which certain styles of
performance can be simulated. These simulations
can be used in experimental and research work,
just as computer simulations are used in the design
of car bodies, aircraft wings and Space Shuttle
heat-shields. .

Many musicians are justifiably concerned that
instruments such as the Fairlight will replace
people, especially as the simulating capacity of
such equipment develops. Groups like Wang
Chung, Duran Duran and Culture Club use
Fairlights as part of their production process, and
it is often impossible to tell what is actually being

combined to produce the individual sound. The
type of characteristics selected should reflect the
way in which the music is played. Such a system
would increasingly resemble the character and feel
of a real acoustic instrument. The only difference
is that no one upright or grand piano iS exactly like
another. All Kurzweil CMI ‘pianos’ will be
identical in character and feel — unless users
develop a method of writing their own ‘character
and feel’ software.
A system even more advanced than the

Fairlight, Synclavier and Kurzweil combined is
rumoured to be under development by Lucasfilm
— the company responsible for Star Wars. Called
the ASP (Audio Signal Processor), this is expected
to incorporate every type of musical digital sound
facility that is presently available only in a large
music studio complex into one operating system.
So, just as the computers and synthesisers of the
1950s took up space equivalent to the area of
several rooms and yet now occupy only a desk-
top, we can expect the recording studio of the
future to be a portable package.

The incorporation of digital technology has not
been confined solely to sound-generating systems
and devices. Modern recording studios usually
include a number of sound-treatment units as part
of their basic equipment. An example is the
reverberation unit. Music is routed through this

Fairlight MCL
The music composition
language used by the Fairlight
CMI is menu-driven, so choices
are made from clear, thorough
menus on the screen. The
waveforms displayed on page
584 were generated with a list of
sound parameters in data
statements, similar to a BASIC
listing, then displayed and
printed out using commands
from the menu

_ played and what is Fairlight-performed. However,
once a user gets to know the operating system, it
becomes clear that the Fairlight is much more than
just an expensive mimicking device. It is a
genuinely new musical instrument, and has a
potential that is still largely unexplored.

Although it is the best known, the Fairlight is
not the only such instrument available. At twice
the price of the Fairlight, the Synclavier system
(costing around £30,000) has similar facilities, but
on a larger scale. Data is stored using hard
Winchester disks with a 40 megabyte capacity. An

entire album could be produced and recorded
within the Synclavier system itself, making an
advanced 24-track digital machine completely
unnecessary.

But even the Synclavier has its limitations. At
present, all the available sampling instruments ;
have one thing in common — they reproduce the pees
sampled sound as close to the original as possible, :

‘ unless the user has intervened to make a specific
modification. But a trumpeter, in the middle of a

yea, see AA

ry Ls Chase \ ane ae ee Wy

ays ue OS aa
am ie ci mach P

is

pas Janus ‘ (eae ca ant

ogy tt wt a ate
epee = =r

live performance, can make a considerable . ey: 2 CRD st
difference to the next sound to be played simply by poet adel
changing breath control or lip position. A gore | a rahe! ©
competent player does this almost without ae Da oer,
thinking. The next step for sampling instruments _ earl 2 ay ae qeascar Leas
would therefore be to produce a Pa oor? peasD™ RO ie tee
responsive’ system. | ‘praca gp onset qa hs

The Kurzweil, which is still a prototype, 7 pasronvite eco’
incorporates a pattern-recognition program. This oT aba carpal

means that when a note is played on the music
keyboard a number of different samples are
scanned, and characteristics from each sample are

THE HOME COMPUTER ADVANCED COURSE 583

unit to add echo or ‘reverb’, and rockabilly |
guitarists and dub reggae producers have
depended on this type of treatment to give their
music its particular sound. |
The Quantec is a digital unit that, instead of |

merely providing reverberation, simulates the |
types of reverberation that occur in rooms and
spaces of different sizes. Its smallest ‘acoustic
space’ is a box with a volume of one cubic metre,
and the preset simulations include sizes typical of
living rooms, auditoriums, aircraft hangars and
cathedrals. The Quantec’s most interesting feature
is the facility it offers to prolong the reverberation
well beyond natural acoustic or physical limits. So,
if a sound occurs in the cathedral-size simulation, ~
and the reverberation time is maximised, the |
whole event will last several minutes — the effect is |
like listening to an echo provided by 10 Grand s 3
Canyons linked together! | |

It is said that, in the American Midwest in the.
1950s, there was a small rockabilly studio that was
built near a grain silo. It was this huge space that |
provided the studio with its classic echo-filled |
rockabilly sound. The modern use of digital units
such as the Quantec is more mundane, being
confined mainly to the post-production stages of ;
television and film work. Actors can be filmed
talking in the acoustically “dead’ environment of a |
studio, and the soundtrack can be treated —
afterwards to provide an acoustic resonance that |
suits the space in which the action is meant to |
occur. | at

Fairlight Fare |
These waveform displays were sampled sound. These P 5
created and printed ona waveforms are produced by HUMAN VALUES
Fairlight CMI music system. The _ digitising the actual sounds of a Many people, musicians and non-musicians alike,

_firstis an example ofasine wave human voice, in the second | feel that digital technology applied to music has a
pattern generated by the instance, and a trumpet in the . ans oA:

Fairlight using FM synthesis third. The displays are ‘three deleterious effect. They Sales that this te
(page 561). This sound was dimensional’, or topographical, created and performed in such an artificial Manner
fabricated by mixing waveforms representing the changes in the that the real ‘human’ values of spontaneity and
electronically. The other composition of each sound over expressiveness are being left behind in the rush to
printouts are examples of time acquire greater degrees of technical control. This is

—_—_ a persuasive argument, but it is worth considering
er DRE MODE | a visual medium — the cinema — to judge if this is
7 really the case.

For several decades, cinema technology has
allowed directors to shoot scenes from any angle, 4
zoom in on detail and pan across large areas. It has
been possible to repeat sequences of images, slow
them down, speed them up, run them backwards, |
and edit film so that the most unlikely visual i
juxtapositions can occur within a split-second. It is |
only recently, with digital technology, that music-
makers have begun to exercise comparable
control over sound. Most people would accept
cinema as an expressive medium, so it is likely that
digital music will eventually be regarded in the
same light. At present, it is easy for some
musicians to be over-awed by the possibilities, and
for others to produce music that has little more
than digital novelty value. For those musicians
prepared to meet the challenge of electronic
music, the 1980s should be an exciting and
demanding decade.

584 THE HOME COMPUTER ADVANCED COURSE

MOTOR CONTROL

In the last part of the Workshop s¢ series we
looked at the construction of an interface
that will enable us to control low voltage
devices and considered the principles of
motor control. Now we look at the

software required to switch motors and
develop a simple feedback control system.

Microprocessor ‘ontral a extemal denieesi is NOW
common in industry, its applications ranging from
counting bottles on a conveyor belt to welding car
bodies. The principles of all control systems are,
firstly to input data from the outside world in a
form acceptable to a microprocessor system;
secondly to analyse that data; and thirdly to
instigate external actions based on that analysis. If
these three activities are repeated in a continuous
cycle then we have a system known as feedback
control.
To illustrate the principle of feedback control

let us take the example of simmering a pan of
soup on a stove. in order to cook the soup, the
heat supplied must be sufficient to make it
bubble, without making it boil over the lip of the
pan. If we were to carry out this task ourselves,
we might initially apply maximum heat to the pan
until the soup started to bubble and then turn it
down until the soup was simmering. If at any time
the soup started to boil we would lower the heat
further. In doing this sort of operation we
monitor the state of the soup visually; analyse
what we see; and take the appropriate action. We
would repeat these actions until the soup was
cooked. A microcomputer could control the
cooking of the soup in a similar, but not identical -
way. The main differences would be in the way
that the soup’s state was monitored. Whereas we
are able to look at the soup and make an
assessment using our experience, a computer
system would have to use another method based
upon easily determined physical properties, such
as temperature. Before the soup-monitoring was
computerised, someone would need to carry out
initial experiments to determine’ what
temperature corresponded to an even simmer,

_and at which temperature the soup would boil
over. From then on however, the computer could
take over the job, provided that the appropriate
devices were available to monitor temperature
and regulate the heat.

Motors can be controlled in several ways using
the buffer box (see page 546) and low voltage
output box (see page 574) that we have
constructed. A Lego or electric train set motor is
ideal to test the software that we shall design. We

need only to ensure that the motor we connect to
the output box has’a voltage rating equal to or
greater than the input voltage from. the
transformer. Connecting the two motor terminals
to line 0 of the output box, we can switch the
motor on and off using the ‘Z’ and ‘X’ keys on the
keyboard. |

BBC MICRO

10 REM BBC SIMPLE MOTOR
20 DDR=&FE62:DATREG=&FE60
30 ?DDR=255:REM ALL LINES OUTPUT
40 ?DATREG=0:REM MOTOR OFF
90 REPEAT
60 AS=INKEYS(1):REM KEYPRESS?
70 IF AS=*Z” THEN ?7DATREG=1:REM TURN ON
80 UNTIL AS=*X”
90 ?DATREG=0:REM TURN OFF

COMMODORE 64

10 REM CBM64 SIMPLE MOTOR
20 DDR=96579:DATREG=56577
30 POKEDDR,255: REM ALL LINES OUTPUT
40 POKEDATREG,O:REM MOTOR OFF
50 GETAS:IFAS< >“Z” ANDAS< > “X” THEN

00:REM AWAIT KEY |
60 IF AS=“Z” THEN POKEDATREG,1:GOTO50
70 IF AS=“X” THEN POKEDATREG,0:END

Put Out More Buffers
The buffer box, our first
construction, is intended to
protect the computer's circuitry
from excessive input or output
currents. Its independent power
supply drives the output box —
the more recent project — and .

allows software-controlled
switching of the 12v output

THE HOME COMPUTER ADVANCED COURSE 585

IAN McKINNELL

We can control the direction of the motor by
connecting the motor terminals to adjacent lines
on the output box. The diagram shows these
connections. We shall also use a simple make/
break type switch, connected to line 7 of the
buffer box to control the direction.

In the following program a value of 1 in the.
data register causes current to flow one way
through the motor. Placing a value of 2 in the data
register will cause the current to flow in the
reverse direction. The program repeatedly tests
line 7 and only places a 2 in the data register when
the line is set low (i.e. the switch is closed). In this
way, the closing and opening of the switch
controls the motor’s direction. This is a very
simple example of a feedback control system.

10 REM BBC DIRECTED MOTORS
20 DDR=&FE62:DATREG=&FE60
30 ?DDR=127:REM LINE 7 INPUT
40 ?DATREG=0:REM TURN OFF
50 AS=GETS:REM AWAIT KEYPRESS
60 REPEAT
70 AS=INKEYS(1)
80 IF (?7DATREG AND 128)=0 THEN DIR=2 ELSE DIR=1
90 ?DATREG=DIR
100 UNTIL AS="X”:REM PRESS X TO END
110 ?DATREG=0:REM TURN OFF

10 REM CBM64 DIRECTED MOTORS

20 DDR=56579:DATREG=56577

30 POKEDDR,127:REM LINE 7 INPUT

40 POKEDATREG,0:REM ALL OFF
50 GETAS:|IFAS=“ >THEN50:REM AWAIT KEYPRESS

60 GETAS
70 IF (PEEK(DATREG)AND128)=O0THENPOKEDATREG,

~ 2:G0T090 |
80 POKEDATREG, 1

90 IFAS< >“X’THEN60 ~
100 POKEDATREG,0:REM TURN OFF

586 THE HOME COMPUTER ADVANCED COURSE

In addition to being able to control the direction
of motors, we can also control their speed directly
from the output box. This does not require
complicated devices, such as digital-to-analogue

converters to control the supply to the motors.
Instead we can send pulses to the motor, turning
it on and off in rapid succession. If we do this fast
enough, the motor will appear to rotate
continuously; the interval between each pulse
determining the speed at which the motor turns.
In order to program this, all we require is a pair of
delay loops of adjustable length, within a larger

repetitive structure, to determine the length of
time that the motor is on and off during each
cycle.

BBC MICRO — |
10 REM BBC VARIABLE MOTOR CONTROL
20 DDR=&FE62:DATREG=&FE60:SPEED=30
30 ?7DDR=255:REM ALL OUTPUT
40 ?7DATREG=0:REM ALL OFF
50 AS=GETS;REM AWAIT KEYPRESS
60 REPEAT
70 AS=INKEYS(1)
80 2DATREG=0:REM TURN OFF
90 FORI=1T0(100-SPEED):NEXT:REM DELAY
100 ?DATREG=1:REM TURN ON |
110 FORI=1T0 SPEED:NEXT:REM DELAY 2
120 IF AS=“D’ THEN SPEED=SPEED-5
130 IF AS=“Z’ THEN SPEED=SPEED+5
140 UNTIL AS=*X’
150 ?DATREG=0:REM TURN OFF

COMMODORE 64
10 REM CBM64 VARIABLE MOTOR CONTROL
20 DDR=56579:DATREG=56577:SPEED=30
30 POKEDDR,255:REM ALL LINES OUTPUT
40 POKEDATREG,0:REM TURN OFF
50 GETAS:IFAS=* ”THEN50:REM AWAIT KEY
60 GETAS
70 POKEDATREG=0:REM TURN OFF
80 FORI=1T0(100-SPEED):NEXT:REM DELAY 1

KEVIN JONES

90 POKEDATREG=1:REM TURN ON
100 FORI=1TOSPEED:NEXT:REM DELAY2
110 IFAS=“D” THENSPEED=SPEED-5
120 IFAS="Z” THENSPEED=SPEED+5
130 IFAS< >“X”THEN60
140 POKEDATREG,0:REM TURN OFF

In this program the variable SPEED is used to
determine the length of each delay loop. The loop
code is such that as one delay increases, the other
decreases and vice-versa. DELAY 1 determines the
period when the motor is off and DELAY 2 the
period when the motor is on. For large values of
SPEED, the first delay is short and the second is
long, making the motor turn more quickly.
Smaller values of SPEED will produce longer
periods when the motor is off during each cycle,
making the motor appear to turn more slowly.
The pulsing effect that the program has can be
observed in the flicker of line 1’s LED.

Exercise Answers
1) Assuming that the sensors are connected to
lines 6 and 7, and the motor is connected between

_ the positive terminals of lines 0 and 1: |

19 REM BBC VERSION 3.:

OO DDR=AFERe :UATREG-=SFEGe

80 *OOR-=<63:PFM Lites Gay iNPUT

46 forward: |lireverse =o

OO *OATREG=forusa

GO POR i=l (OSMRe ie teem DELAY

fe Peren’ UN iL OR TREG ANDiSe):. iae

me UAT REG) eer ce

MO PORTei (Ce COS Ne. = BED CELA

ie IF £S0ATREG AMD 13e)¢ 1ge Ineo

ELSE GO07TCi ae

iG REM CEM 64 VERSION 2...
PO 00R=5365-°5:0AREG-S657_-
SO POKEDUR 6GSiREM LIMES Gar INPUT
40 Fli-l:RJ-e
SO POKE DATREG. FW
6@ FORI=1TOIOOO:NEXT: REM DELAY

7O IF CPEEK COATREG I AND1Se>=i1SeTHEN?O
SO PORE Gr leeG Ry

SO FORi=17'CiO66:'E 1: REM DELAY
180 IF CPEEK COATREG AMD i9e><>1SeTHENSS
116 GoToiog

3) Assuming that the 40 and 70 degree sensors
are connected to lines 6 and / respectively, and the
heater is attached to line 0:

19 REM BEC VERSION 2.2
20 ODF -SFE62:DATRES -crE
eC OCR -G2:b)] LINc= Ga
40 REPEAT
SQ AS=INKE YS< 13
60 ATREG-1:REl (UPI, J HEATER
70 REPEeT
60 UNTIL. ?DATREG ANDi929=0:REM 7O DLG
90 2URTREG=O:REM HEATER OFF
100 REPEAT N71. °ORTREG AND1ge .=ice
110 UTIL Asi >": PER Ke YyPReEG=

i@ REM CBM 64 VERSION 3.3
€6 DOR=56579:O0ATREG=56577
SO POKE DRR,6S:REM LINES Gar INPUT

40 GET As
SO ~UAlREG-1:REM [URN HEATER Gi
BO [Ff (PEER DATREG Alibi ge >< 6 HEME

7O POKE OATREG.O:REM HEATER OFF
80 IF(PEEK COATREGIJAND1Se9< > ise lTHENGS

SS iF At- ‘THEO
af

So Far,
Driving wire guided toy cars
around

seem an enormous return on the

effort a

building and programming even
these s

introduced us to the reality of
electronic and electromechanical

construction, and demonstrated
some of the problems and
opportunities involved in making
software interact with the real

world

So Good

on the floor may not

nd capital invested, but

imple artefacts has

NVIFHM JAVG Ad NOILONYLSNOO 0991

2) Assuming that the sensor connects to line /
and the motor connects between lines 0 and 1:

ia

ros

38

a)

oo

ea

oO

So

oe

Rem eo YER itl 3 c=

DOR SPER e UA REG Hare GO

POUR eiersPet iP © INPUT

BPeGd=sh i fora d=] if euersce-e

direct igan=foruarcd

PEPEAT

FORA TREG-O: RE’ OFF

POR] -i1'0(' i860 -peec (e7

7ODR i REG=direc tian

190 FORI1=110<ceecd: hex
11@ UNTIL <20ATREG ANO1lee)=0:REM SiWitcH
126 FORI=17TO10@0:MENMTIREM DELAY
iS@ REM TEST FOR OVER PAD
149 IF (°0ATREG 9110129) -87HE DaTReG-a:

ENG

156 Ret Reverse SLY

168 66660 -Cidi = eet ign = 6047 ee: GUilUGe

10

eu

a0

ae

ou

GE

fo

ou

ae

100

110.
leo

iso

140

PEM Cem 64 VERSION 3.2
DOR =565 4° 0ATREG=5657/
PORE OOR,.127:REM LINE 7 iNPUT
GP -30:Fl- 1 -RV-e
DR=FW
POKE UATREG 9: REM GFF
FORI=17T0°100-SP>: NEXT
POKE DATREG,OR
FORI=170SP:HEY7

IF (PEEK (OA TREG) AND 129) < SO THENGO
POR1-1701000:HE> 7: REM DELLA,
LF (PEER (COR REG AND les) -8THENPOKE
DATREG 9: ERD
REM REVERSE GACK SLOWLY
6P-2:0R-RV:GoTose

4) Assuming that the first switch is on line 6 and
the second is on line 7

if

20

Rs

46

o0

eo

7o

eb

se

ib

eb

3u

a0

ou

a8

Oo

oo

20

REP BBO VERSION 2.4

DOR =s8FEECIOAIREG-GFEGuU: DISTANCE =1

JOUR -b>

REFER? UNTIL. DATREG ANDiGa 3H

JDM IFEC- |

Tiye eo Rey Siae iter

PEPER UNTIL -OR REG Sib iee) -o

PRInNt sPEEU- DieiAlie = ihe, igo

yUG TREO ee

REM Ceid 64 VERSION 3.4
DOR =965 9:00 1 REG -5657-<

POKE ODR,63 ~
IF (PEEK (DATREG)AND64 >< >@ THENS@
POKE DATREG, i

TeTiiRehl SIAR] {ier
IF (PEEK (DATREG ANDieG)< O81 HENee

PRINT "SPEED="O5S7(¢CTI1-T),60)

POKE DATREG.©

rUS-1

THE HOME COMPUTER ADVANCED COURSE 587

~ CHARACTER ©
~FORMING

We have looked at how to define your own
characters on the Commodore, here we
provide two programs for the BBC Micro
and the Spectrum. Both machines have an
area of memory reserved for the user’s
characters, which makes _— character
generation a far simpler exercise.

The Spectrum S approach to user-defined
characters is typically matter-of-fact: 168 bytes at
the top of memory are aedicated by the operating
system to the user’s character definitions (though
this memory can be used for other purposes, such
as storing machine code programs or data). This
space allows 21 character definitions to be stored,
and the operating system attaches a CHRS value in
the range 144 to 164 to each definition. The
characters so defined are regarded by the machine
as the characters ‘a’ to ‘u’ in graphics (G) mode.
The user-defined graphics (UDG) system
variable (address 32600) points to the first byte of
the dedicated memory area, but you don’t have to
do complicated sums with this variable to find the
Start address of a character definition. The

Spectrum

command LET address=USR “A’ returns the address
of the first byte of the definition of the character
inside the quotes.

Comparing the length and structure of the
Commodore and Spectrum lists demonstrates the
relative ease of use of the Spectrum’s methods.

The program is a straightforward translation of
the Commodore version (see page 572). The
Spectrum’s normal cursor keys (shifted 5, shifted
6, etc.) control the edit cursor, and the unshifted 6,
i and 8 keys are the command keys —togglea cell,
change the edit character, and place a character in.
the text window. The exclamation mark is the exit
command.
When you have defined your new characters,

588. THE HOME COMPUTER ADVANCED COURSE

you can SAVE the UDG area by the following
command:

SAVE “udgfile’ CODE (USR “A”), 168

and reload it thus:

LOAD “udgfile” CODE

The BBC Micro’s treatment of ieendepned
graphics is similar, at first. glance, to the
Spectrum’s. The 256 bytes between &0COO and
&OCFF are reserved for the definitions of the
ASCIlI-coded characters 224 to 255. If the
character set is imploded (see The BBC Advanced
User Guide, page 136) then those definitions are
also applied to the ASCII codes 128 to 159, 160 to
191 and 192 to 223. In the exploded state, the
entire printable character set (from CH RS (32) to
CHRS(255)) can be redefined, but at the cost of user
RAM. For most purposes, a maximum of 32
special characters should suffice. |

The program functions are the same as in the
Commodore and Spectrum versions. The arrow
keys control the cursor, and the function keys, f1
to £3, access the toggle, redefine and place
commands. As before, the exclamation mark, ‘!’,
is the program terminator .

Hie with

BBC Micro

Notice the OS calls at lines 70 and 180: these
disable and enable the COPY functions so that the
arrow keys can be used in the program; if you quit
the program other than through the ‘!’ command,
you must type *FX4,0 at the start ofa Lnew line to re-
enable the editing keys.

The BBC Micro does allow you to use VDU23 to
define characters, but in this case it is simpler to
calculate the relevant addresses and then PEEK and
POKE them individually.
You can SAVE your special characters thus:

“SAVE “filename’ OCOO OCFF

and reload them thus:

~*LOAD“”

IAN McKINNELL

»

a

00000000

THE HOME COMPUTER ADVANCED COURSE 589

00000000

HOT
PROPERTY
Cheetah Marketing is a company with a
good track record in producing add-ons for
the Sinclair Spectrum — the Sweet Talker
synthesiser is the most successful to date.

e RAT, a remote-controlled joypad that
uses infrared waves, is the company’s latest
achievement. We look at this addition to
the home computer menagerie...

Serious arcade games players tend to be very
concerned about anything that significantly
affects the speed and quality of their play —
especially if it has a noticeable impact on the final
score. For this reason, the way in which a game is
controlled is a matter of great importance. With
games controlled from the keyboard, the major
concerns are the choice of control keys and the
ease with which these can be used. Consequently,
software writers must pay particular attention to
this sort of detail. With external controllers, like
joysticks, the design of the hardware tends to be
the crucial factor.

The flexibility of a joystick — its freedom of
movement, how quickly it reacts to your touch,
the speed at which the game responds — is its
most significant design consideration. But the
designer is often hampered by the limitations
imposed by the nature of a joystick itself — the
length of the connecting lead, the size, shape and
position of the controller, and the position of the
fire button(s). The latter detail, for example,
often favours right-handed players. Although
joystick manufacturers have tried to develop
designs that overcome some of these drawbacks,
none have been as successful as Cheetah
Marketing’s infrared remote joypad for the
Sinclair Spectrum.

Cheetah has called its joypad the RAT. The
name is said to be an abbreviation for ‘remote
action transmitter’, but seems to be a play on the
word Mouse, which is applied to the hand-held
controllers used with Apple’s Macintosh and
other machines. The RAT looks like a slightly
elongated phaser weapon from television’s Star
Trek series. It is long, flat and grey, with a blue
circular control pad, the Cheetah logo and a
bright orange fire button. There are two infrared
transmitters extending from the front of the unit.

en you first hold the RAT and press the fire
button you almost expect flashes of blue flame to
leap from it.

The system also includes its own interface,
which plugs into the edge connector at the back
of the Spectrum. This box has an expansion port
of its own for further add-ons. There is.a single

590 THE HOME COMPUTER ADVANCED COURSE

ae
Ss ERR

Radiating Light
Infrared radiation — having alonger wavelength than visible
light, but shorter than radio waves — is produced tn the
transmitter by Infrared Emitting Diodes (IEDs) when an electrical
current in a tiny chip of gallium arsenide excites the molecules
causing photons to be released. In the receiver, conversely, an
electrical current flows in the IED when infrared light falls upon
ihe gallium arsenide. When the control buttons on the RAI are
pressed, therefore, the two transmitter IEDs emit coded pulses of
infrared in a broad beam, triggering the receiver directly or after
reflection in the room :

CHRIS STEVENS

infrared receiver on the front of this unit for
communicating with the RAT.

The package has a sheet of instructions that
explain how the joypad is used and what games
can be played with it (any software that is
Kempston joystick-compatible). With great
foresight, Cheetah has included routines in BASIC
and machine code that enable you to incorporate
RAT control in your own games. :

The instruction sheet claims that the RAT can
be used at distances up to 12 feet by aiming ‘in the
general direction of the computer’. Movement is
effected by pressing lightly on the blue control
pad. There are eight small ‘bumps’ on the
periphery of the pad, and pressing on or near one
of these indicates the direction required — N,
SW, and so on, rather like the directions on a
compass. While one hand holds the RAT and
controls the direction of movement on the
screen, the other hand can be used to press the
fire ‘button’. Because of the design of the RAT, it
makes no difference which hand performs each
task, so the joypad works equally well for left-
and right-handed players. The transmitter
requires one PP3 battery, which fits into a small
space at the back of the unit directly below the |
blue control circle. ee | ae

Once the interface box is connected, the
transmitter unit has been fitted with a battery and
a game requiring joysticks has been loaded into
your Spectrum, then you are ready to play. 7
Because there is no visible sign that the
transmitter is working until you can see
movement on the screen, you might find yourself
sticking as close to the computer as you would
with any other joystick. There is a certain
reluctance to believe the claims of a 12-foot
control distance. But when you realise that the
RAT really works, you will want to experiment to
see how far it can go. |

In fact, the remote action transmitter works
extremely well at distances even slightly over 12
feet. And it doesn’t have to be pointed in the :
general direction of the computer. The RAT
works when pointed straight up at the ceiling,
down at the floor, over your back or sideways
(although it is slightly difficult for you to see what
you are doing when the transmitter is pointed at
odd angles). Clearly, the Cheetah RAT gives a .
games player a tremendous freedom to move
around. The biggest drawback, however, is that it
has only eight positions of movement — up,
down, right, left, and intermediate points. It _
would be better to have more control than this.

The fact that the RAT has no moving parts
makes the unit less prone to wear and tear than
standard joysticks, so it should last a long time. In
fact, it comes with a year’s warranty. At £29.95,
the Cheetah RAT costs only slightly more than
most other joysticks plus Interface 2. (Of course,
if you already have Interface 2, this is not much 7
consolation.) But its play allows much more
freedom of movement and far better control than
most joysticks. 3

CHRIS STEVENS

es

Mixed Reception
The original keyboard of the long-awaited IBM PC Junior was
noted mainly for the low quality of its appearance and
engineering, but it was also the first microcomputer with infrared
linking between keyboard and processor

THE HOME COMPUTER ADVANCED COURSE 591

[een]

FILE PROTECTION |
Computer files stored on tape or disk can
generally be accessed by anyone who knows the

name of a particular file or can get a catalogue of

the files available. If a file contains confidential

information (a company’s accounts, for example,

or the source code of a commercial program) it

must be protected from unauthorised users. The

simplest method involves locking the disk or tape

away in a secure location, and some companies

spend fortunes on this kind of security for their

computer systems, recognising that the

information contained is their most precious

resource. Physical protection, however, is

compromised by the need for people to use the
system, and disks, tapes and security passes can go
astray. Against these failures, therefore, the

creator of a confidential file has to provide some —
form of built-in file protection.

A large multi-user system may provide the first
level of protection by requiring users to log-on
with an authorised user code and a user-defined —

password. The user code (sometimes called a PPN

— programmer project number) determines the
user’s system privileges, including the level of

access permitted. Each user has an individual file

directory area on disk, and the proper
combination of privilege and password is required
to access other users’ directories. System

personnel, such as operators and programmers,
often have common PPNs and passwords — like a
hotel’s passkeys — that can give access to the
entire system. Because of the power this gives, and
because the codes are often unimaginatively

chosen, cracking this protection is a hacker’s
prime objective (see page 486). :
A more widespread problem than that of

breaking into private data files is software piracy
— the illegal copying of commercial program files.
Software publishers have tried many forms of file
protection, only to find most of them being broken
as soon as they are introduced. The earliest file
protection techniques included hiding data in
normally unused spaces on a disk or tape. This

- method confuses the computer’s operating system
so that it can read the file only when the program is
running, and cannot copy it. A more recent
approach to this problem involves serialising disk-
based software. The first time a program is run on
a computer, a serial number associated with that
particular computer is added to the file. From then
on, that file — and any copies made from it — will
work on that machine only.

FILE SERVER
In a network, one of the computers .is sometimes
set aside to handle file accesses for all the other

terminals on the network. In such a system, all -
communications from and to the terminals,
printers, disk drives and other peripherals are
treated as separate files, which greatly simplifies

the controlling computer’s task. This computer is.

called a file server, and its only task is to control the

movement of files between nodes on the network

592 THE HOME COMPUTER ADVANCED COURSE |

and the storage unit.
The file server is called by a node when a user

needs a particular file (which could be a data or
program file on disk, or a communication with a
printer or other peripheral). If the file is open to
that user and not being used by another node, the
file server sends the data. The file is massaged, or
altered, by the user and returned to the file server,

where it is updated to incorporate any changes
and then re-saved. :

The Econet system is a low-cost and popular
example of this kind of network, and normally it
allows a BBC Micro as the file server. Users of the
early versions of the system, however, found that
more processor power was needed to run a
network of any size. The Acorn System 3 was
generally used as a stop-gap until the 6502 second
processor for the BBC became available.

Joining Forces
The Acorn Econet joins up BBC Micros in a bus-type network.
The bus may be a simple twisted-wire pair, and one micro is
dedicated as the file server ,

FILE TRANSFER
A file is usually created within a computer and
then stored in some peripheral storage device.
Copying the file between them — or to another
node in anetwork, or to some distant system — are
the commonest examples of file transfer. The
problem in these vital communications is the
recurring one of format compatibility. All
communicating devices have their own
requirements (or protocol) concerning the
transmission rate, parity, and connect/disconnect
signals. These protocols are often specific to the
device, so file transfer is rarely a simple matter.

Different manufacturers and organisations
have made various attempts at standardising these
formats, but their solutions have usually added to
the problems. The recent growth in national and
international telephone data networks, however,
is gradually imposing consistency. Within a
network, the simplest answer is usually to make all
transfers through the network controller (file
server), which can accept a file from any node and
pass it to any other node in the network in the
appropriate format.

$$ EL LI

~ VARIATIONS
~ON ATURTLE —

As it stands, this procedure will draw a square with
sides of 50 units in length. However, it would be —
far more useful if the square could be drawn to any
chosen size — to do this, we must input the desired

Our examination of the L0Go language has
already shown us how procedures can be
defined to carry out sequences of

commands, Such procedures are more value. To change SQUARE to accept an input, usé
flexible if the user is able to input different the editor to replace the fixed value of 50 with the
values that will alter the effect achieved variable “SIDE and add :SIDE to the title line. Our
when the procedure is called. procedure will now look like this:

In LOGO, a word. cag
example — may Ye used in three different ways. To
distinguish between these, LoGo uses three
different notatidns: SIZE, :SIZE (pronounced “dots
size’), and “SIZE 5 (‘quotes size’). As we have already
seen, if LOGO) meets the word SIZE, oe
preceding a ctuation, it takes it to bee procé square will vary. \
name and |, carry out the Squence/ ‘of LePs ec oe what happ pens when you type
commands 1 1 the SIZE defini ion. “SIZE i is Y séd to SQUARE 30: “Lo \the definition of
indicate the; ‘value held-ir fhe variable nafne — if title | lat
LOGO encopnters“SIZE it wi ieveéthe val iis i ed “SIDE. The
associated tie name. “SIZE is uséd 40 rthe-input.line (irith
variable namés and procedures, | buft in idicates that

al
i g to the name ite , al aud not to an,

uses this as/the in NX
“SIDE is Jusod O \

ae consistent ts fO\it. If Another coe also uses \
7 nands \ E | /namie for an input it will us¢ a different Ne

is hetefore referred rj as a local Fo

inpyts with shbprdcedures The Sf:
re we give herelis gur solution to /

ad nAvelaet mn 5 ent (your answer

ent) can be modified So that os ss
a |

~~ LE TRI: ‘BIg fof

example - vas reed extra int Ql denrintion beet — END nn bh
can be used. The word FORWARD on its own is £
meaningless — a value must be assigned to it 10 sun a SIZE a 0]
before LOGO can carry out the command. If END
variable names are included in our procedures;we : fA.
can input any required value and thus vary the “_TOTRI:SIDE /
effect obtained when the procedure is called. “SSREPEAT 3 [Fp SIDE RT 120]
Let’s consider the procedure we defined in a END Nw

previous instalment to draw a square: _ Here, we ord used three different variable names
? S eBlc: “SIZE and “SIDE. We could have used the

~ TO SQUARE same name for all three, as variables are local tothe |
REPEAT 4 FD 50 RT 90] 7 _ procedures in which they are used, a this could

END have been confusing.

THE HOME COMPUTER ADVANCED COURSE 593

_ To see how these procedures work, let’s see
what happens if we type HOUSE 30. Loco reads the
input line and assigns the value 30 to the variable

“BIG in HOUSE. The first line of HOUSE is therefore
now equivalent to SQUARE 30. The variable “SIZE in
SQUARE is, in turn, assigned the value 30. SQUARE
is now run, with FD :SIZE becoming FD 30. A similar
procedure is followed when TRI is called.

_ Now try adapting the procedures for drawing :
the five-by five board so that BOARD takes the size

/ i new a
so that it will'\draw
by-five). The re will b |

number of squ ‘reeti a pe ee

GLOBAL \ VARIABLE :

should be used sparingly. .
The command MAKE is used toa

global variables. MAKE “SIDE 3 assigns som
of the variable “INSIDE. MAKE “SIDE ‘SI DE
increases the value of “SIDE by one. The ex
meaning of the notation in this second example is:
find the value of the variable “SIDE, add one, then
assign the result back to the variable named “SIDE.
In each case, MAKE requires two inputs — the name
of the variable, and the value to be assigned to that
variable. —

To sum up the programming features we have
covered in this instalment of the Loco course,
we've designed some procedures for drawing
spirals. The main procedure is named EQSPI. This
requires three inputs: the initial length of the line to
be drawn, the angle that must be turned at each
‘commer’ of the spiral, and a scale factor by which

the value

|

594 THE HOME COMPUTER ADVANCED COURSE

makes ae more. difficult and so icy

S12) | values to.

the initial length must be multiplied to produce the
spiral effect. Different sets of inputs may be used
to achieve different effects — we tried 70 283 0.95,

70 143 0.95, and 20 243 1.05. Try other sets of
numbers and see what happens.
NOWRAP is a new command. This stops the

turtle “wrapping around’ the screen — when the
turtle reaches the screen boundary the procedure
will stop with an ‘out of bounds’ error message. In
many cases, the wrap-around effect can give

actor), then tu
finally alters the scale factor. The length of the
lines drawn either \ Increases or decreases,

pending on whether
ter less than 1. The le

dure going for a long
enough, p ress Control-G (or

dure ru nning. Most of the

Exercise Answers
1) Tangram Puzzies

Man Bowing
TO BOWING

MOVE! TRIi MOVE2 PARI MOVES TRIS MOVEd
TRIS MOVES TRI1 MOVES TRIl2 MOVE7 SQUARE

The man sitting, the man bowing, and the cat
shapes, all use the other side of the parallelogram
piece from that used by the dog in last week's
example. In order to turn a piece over in LOGO, you
simply change all RIGHT turns to LEFT turns. So
instead of:
10 FAR

REPEAT 2 [FD 25 RT 45 FD 35 RI 1395]

END

we will sometimes need its ‘other side’ given by:
1G PARI

REPEAT! <¢ [FO 25 LI 45 FD 35 LI 135)
END

All the other piece procedures are exactly as given in
the last part of this course

TO RUNNING
MOVE! TRII MOVE2 FAR MOVES [RI3 MOVE4
TRIS MOVES SQUARE MOVES TRIi MOVE? ITRi2
MOVES

END

TO MOVEI
LT 45

END

10 MOVE2
PU FO 25 Ri 135 FD 17.3 Li 45 FD

END

TQ MOVES
FU FO 75 RI 90 PD

END :

TQ MOVES
FU RI 70 FD 25 RI 70 FD

END

TO MOVES
PU FD SO RI 135 FD 38 LI 135 PD

END

TO MOVES
PU RI {85 FD 21 RI 135 FO 25 Li 70 FO 50
Lt 20 FO 25 RI 70 FD

END

10 MOVE?

PU FD 25 Ri 135 FD 71 RI 48 6k 35 POD
END

TQ MOVES
PU FD 25 .! 70 FD 25 Ri 45 FO l7.5 LI 45
FD 25 RI 135 FD

END

Man Sitting
TO SITTING ~

MOVE! TRI11 MOVE2 TRI2 MOVES TRI3 MOVE4
TRI1 PARL MOVES SQUARE MOVE6é TRI3 MOVE7

END
TO MOVE!

LT45
END:
TO MOVE2

PU FD 25 LT $45 FD 17.5 RI 70 PD
END

TO MOVES
PU BR is Li vo FO

END

TQ MOVES
PU FD 50 RT 45 FO 25 RI 70 PD

END

TO MOVES
PU FD 25 LT 45 FD 35 LI? 45 FD

END

TO MOVE 6
PU BK SO LT 70 PD

END

TO MOVE?
PU BK 21 RI 135 BK SU RI 70 FO 35 LI 28
PD

END

MOVES
END

TO MOVEI
LT 270

END

TQ MOVE2
PU FD

ENO

TQ MOVES
Pu OLE

END

TO MOVE4
_ PU RT
END

TO MOVES
PU RI

END

TO MOVES
PU RT
FD

END

TO MOVE?

END

10 MOVES
PU LT
LT 45

END

Cat
TO Cal

MOVE! TRI3 MOVE2 SQUARE MOVE3 TRI1 MOVE4
TRI1 MOVES TRIS MOVES PAR! MOVE? [Ri2
MOVES

END

1O MOVE

END

TO MOVE2
RT 170

END

TO MOVES

20

45

70

20

70

33

45
BK

RT

FD

FD

FD

FD

RT

FD
20

135 FD 30

So LI [35

90 LI i135

50 LT 135

20 RI 45 FD 7.5 RI 45 BK 35

135 FD 7.5 LT 45 FD 55 RT 45

36 RT 45 FD Sé lt 135 FD 3s
PD

PU FD S30 RT ¥O PD

PD

BK 30 PD

PD

FO 3 RI 70 PD

FU Ri 70 FD 25 Li 20 PD
END

TO MOVES
RT 180

END

TO MOVES
PU RE 70 FD 25 LI 80 FD 30 RI 45 FD 50
RT 70

END

TO MOVES
LT 155

END

TO MOVE?

PD

PU LT i60 FD 335 PD
END

TO MOVES
PU FD 35 Li 45 FD 21 KI 135 FD

END

Man Sitting

THE HOME COMPUTER ADVANCED COURSE 595

FINE TUNING

Our course on program design has so far
concentrated on ‘structured’ programming
methods. Using the techniques we have
suggested will make your programs easier to
design and debug, but will do nothing to
make them run any faster. Here we consider
ways to increase program execution speed.

Structured programming and good program
layout are techniques that make programs easier to —
use, but do not improve program efficiency. ‘To
make programs run faster and use less memory
space, it is often necessary to sacrifice clarity in a
program’s design. So we should bear in mind,
when ‘tuning up’ a piece of code, that almost
anything that is done to make it faster will
invariably make it more difficult to read,
understand and debug.

The inherent slowness of interpreted eevee
like BASIC means that there will be times when
programs will run at an unacceptable pace and
must be speeded up. The most efficient way of
speeding up a BASIC program is to compile it.
However, very few micros support a true BASIC
compiler — there are disk- and cassette-based
compilers on the market, but most of them
support only integer BAsic, and may require
special formatting of your program before
compilation. Compiling is a slow process,
especially during program development, and
especially when the system is cassette-based. ‘The
compiler will occupy user memory, and the more
comprehensive its facilities, the more RAM it will
take from the user progean area. In general on

596 THE HOME COMPUTER ADVANCED COURSE

home micros, compiling is recommended only for
fully tested and debugged programs.

File accesses slow programs down more than
any other single cause. In a program that
frequently reads from and writes to disk or tape (a
database program, say) delays are inevitable.
Access to a record in a random access file on a
floppy disk takes an average of about a quarter of a
second. Access to data in serial files takes longer
(and varies with the length of the file) and tape
accesses are considerably longer. If these delays
are causing problems, it may be possible to reduce
the number of accesses by reading in more data at
once and storing it in RAM, and by ‘saving up’
updates to files until the end of the session.
Interactive programs often cause problems
because the user is left staring at a screen for
several seconds. A partial solution here is to re-
organise the program so that files are read and
written while the user is busy doing something else
(reading a screenful of instructions, for instance).

Another cause of slowness is real arithmetic.
Real numbers are ones with decimal places
(integers are whole numbers). Because of the
decimal part, fetching a real number from memory
and performing an arithmetical operation on it

_ requires many more machine cycles than doing the
same for an integer. In programs with a lot of
arithmetic, it pays to replace all the variables
involved with integer variables (e.g. SUM should be
replaced by SUM%). Savings of around 20 per cent
can be achieved for even moderately numerical
programs and ‘number-crunching’ applications
stand to gain by as much as 50 per cent.

Designing a faster algorithm is one of the best
ways of speeding a program up. Some sources of
algorithms have already been recommended in
this course. Try these, and be on the lookout for
those published in computer magazines.
Otherwise, devising algorithms is a matter of
creativity and insight. Basics usually have a wealth
of inbuilt functions (such as INSTR, SGN, LOG, and
so on) that are very fast. This speed is a result of
their being written in machine code and using the
best algorithms available. It is often worth
checking the manual again to see what inbuilt
functions are offered before coding your own
version. User-defined functions, implemented
with the command DEF FN, also run quickly. This
command is most useful in programs with
repeated calculations or a repeated sequence of
string manipulations, where it can replace a
subroutine call, which is much slower.

Writing routines in machine code generally
makes them run faster. ‘This is because interpreted
languages translate program lines into machine

code as they are encountered while the program is
running (they do not do it particularly efficiently,
either). Writing in machine code avoids this
translation process. Unfortunately, writing
Assembly language programs is much more
difficult than writing BAsic, and the cost in time
and effort may not be worth the eventual saving.
However, some programs — those using animated
graphics, for instance — would not work as
intended if they were written in BAsic alone.

There are many other ways of making smaller
savings in processing speed. Use a variable instead
of an actual number (e.g. MAX rather than 267.5)
for faster access to values, especially in loops. Use
different letters to start variable names, and spread
these initial letters evenly throughout the
alphabet. Use multiple statement lines (if that is
possible) and create a sizeable interval between
line numbers (such as 10). With FOR... NEXT loops,
if the interpreter permits, leave off the loop
counter variable (for example, use NEXT rather
than NEXT LOOP). Inside a loop, try to avoid
calculating the same value over and over again.

Instead, calculate it outside the loop and
incorporate it as a variable.

SAVING SPACE
Integer arithmetic not only saves time, it also saves_
space. Where it may take four or five bytes to store \
a real number, it need take only two to store an
integer. This represents a major saving, especially
where large arrays are involved. Other
improvements to the speed of a program will also
save space: using inbuilt or user-defined functions
saves code, as does writing in Assembly language
and using multiple statement lines. Compiling
tends to increase the size of smaller programs and
only saves space for large ones.

Removing REM statements is an obvious space-
saver, and using shorter strings of text for prompts
also helps. Putting large blocks of text into files
that are stored outside the program keeps them
out of the way when they are not needed
(instructions and ‘help’ files are the biggest
burdens). Remove as many spaces as is legal
within a line, and use shorter line numbers and
shorter variable names. If an array needs to be
dimensioned but its exact size is not known, don’t
just guess a convenient round number. Instead,
leave it until the information needed is on hand
and then dimension it with a variable, like this:

10 INPUT“How many instances are in this
category?”;INSTANCES%

20 DIM ARRAY% (INSTANCES %)

This is called ‘dynamic dimensioning’ and it is
something that BAsic offers and most other
languages don’t — so make the most of it!

_ Another technique involves increasing BASIC’s
memory allocation in RAM. This can be done by
using commands like HIMEM. What these
commands usually do is to change the area in
RAM that is available to BAsic programs and
variables. The normal use for this is to store

machine code programs in a safe place where they
won't be overwritten, but the same command can
be used to access extra space from that normally
reserved for the screen memory. If it does not
matter what is appearing on the screen, then this is
a good way to get an extra kilobyte of RAM. If it is
not possible to change HIMEM, the screen memory
can still often be used by PEEKing and POKEing
directly to the memory locations reserved for it.

_ Tfall else fails and the program simply will not fit
in the space available, many BAsics have a CHAIN
command that allows one program to pass control
to another. Some BAsics allow use of the COMMON
command; this passes particular variables and
their current values to the next program. CHAIN on
home micros (if it exists at all) is usually a very
simple command that enables all or none of the
variables from the first program to be passed to the
second. |

If programs are written in a structured way, the
individual subroutines should be capable of being
written and tested independently. Their execution
can also be individually timed. Write a simple
timer like this one:

100 REM Use this first section to set any variables
105 REM that the routine will need (don't forget
110 REM to dimension arrays and fill them with
115 REM realistic data too if the routine uses any).
120 REM This program is in BBC BASIC and TIME
125 REM is a pseudo-variable that holds a value in
130 REM hundredths of a second, generated by the
135 REM system clock |
200 START=TIME
210 GOSUB 2000:REM The routine being timed is

called here. |
220 FINISH=TIME
230 PRINT “Execution took”; (FINISH-START)/100;

“seconds.” |
240 END

With this routine it is possible to experiment with i
different algorithms and other ways of increasing
speed.

THE HOME COMPUTER ADVANCED COURSE 597

Index Links .
The symbol BASE — initialise
as $0500 — is the address of the
first byte in a table of values. The

- indexed addressing mode
instruction LDA BASE,X takes
the value of BASE, and adds to it
the contents of the X register, to
produce the actual address of
the byte whose contents are
loaded into the accumulator. If

this instruction is inside a loop
of which X is the counter, then
the entire table can be
accesssed, byte by byte, in

sequence. Since X is a 16-bit
register, the loop could range

over the entire memory space
($0000 — SFFFF in an eight-bit
system such as the 6809)

SYMBOL TABLE

| VALUE | SYMBOL
$0500 BASE

KEVIN JONES

CHANGE
OF ADDRESS

spaenansienaicannsaraneranaac

At this stage in the course, we
detailed look at how the two index registers,
X and Y, are used in indexed addressing.
We illustrate the value of indexing by

computer was that by storing the program in the
same place (and in the same form) as the data on
which it was to operate, the program could modify
itself as it was running. The major use of this
feature was not to modify the actual instructions
themselves but to modify the addresses where the
instructions got their data. Imagine the problem of
having to access a table of several thousand
numbers, and having to give separate instructions
for each because each instruction could refer only
to the one unchangeable address.

This problem was greatly alleviated with the
introduction of the concept of address
modification. In this way, the same instruction
could be repeated any number of times and be
made to refer to different addresses where data
was stored by using the changing value in a register
to alter the address. We use this sort of concept all

_ the time in BAsIc programs. For example:

FORI=1TON
PRINT TABLE(|) ©
BEXT ISS

In this case, the same PRINT instruction refers to
different data each time it is used by modifying the
basic data item (TABLE) using an indexed value (1),
which is changed each time it is used.

The fundamental principle of indexed
addressingis that the contents of the index register
are added to the base address given in the
instruction to produce the effective address — the
memory location that is actually accessed. If this
instruction occurs within. a loop, then the
adjustment to the index register (usually an
increment or decrement) can be performed within
the loop as well, and thus we can easily access a
whole table of values. _ |

The 6809 not only has two registers for this
purpose, the X and Y registers, but also two further
registers — S and U. In special circumstances it is
possible to use the program counter as well. To
make the whole subject of indexed addressing
even more complex, there are a variety of different
modes of indexing. However, these do cover
nearly all programming requirements. We shall be
using indexing, in one form or another, in all our
programming from this point, so there will be
plenty of opportunity for you to familiarise
yourself with the variety of ways in which it is used.

598 THE HOME COMPUTER ADVANCED COURSE

Indexed addressing is indicated by adding ,X to

the operand field — if the register used is the X

register, of course. So the general form of an

indexed instruction is:

Opcode Offset,Index Register
LDA TABLE1,X
STA TABLE2,Y

In many situations the offset is zero, in which case
it can be omitted. For example:

Opcode _ ,|Index Register
LDA ,X
STA ,Y

Let’s see how this works in practice. Suppose we —
have a table of 64 eight-bit values stored at $3000
and we want to access the bytes in sequence. We
can define the base address and reserve space for
the table using the directives:

ORG $3000
TABLE RMB 64

These instructions set the program counter to
$3000, define TABLE as beginning at $3000, and
reserve the next 64 bytes. We now access the bytes
using the next piece of code: the new ORG directive
means that our code will be stored in a different
part of memory from our data. When you start
using indexed addressing this is a sensible
precaution against a loop getting out of control

and causing your program to overwrite itself.

ORG $1000
COUNT — FCB 0

LDX #0
LOOP LDA . TABLE,X |

We now alter the value in the X register:

| TFR X,D
ADDD #1
TFR D,X

This is an awkward way of incrementing X,
although it can be useful when we are
incrementing or decrementing by numbers
greater than two. We will look at the alternatives
to the method used here later in the course. The
last fragment of code increments the count and
checks to make sure that it is not 64 (in which case
the program is finished and there is no need to
loop again): —

INC COUNT
LDB COUNT
CMPBts«d#G4
BLT LOOP

There are a number of ways of improving the
efficiency of this code. One of the most useful

ways is to use the auto-increment mode. The
instruction:

LDA TABLE,X+
will cause the value in X to be automatically
incremented after it has been used. If we have a
table of 16-bit values then we use:

LDA TABLE,X++
which causes the X register to be incremented by
two. Our original program loop is now
considerably streamlined:

LOOP LDA TABLE,X+
INC COUNT
LDB COUNT
CMPB #64
BLT LOOP

Another useful alternative to the original method
we outlined is to step through the table of values in
the reverse order, perhaps using the auto-
decrement mode. This has the advantage that the
final value in the X register is zero, and as auto-
decrement of an index register automatically sets
the flags in the condition code register, we can test
directly for the end of the loop without having to
use a CMP instruction. The same effect can be
obtained by loading the index register with a
negative value and incrementing this until zero is
reached. Every time the auto-increment
instruction is obeyed, it sets the condition code
register flags to show the results of the increment.
If a zero result occurs, for example, the zero flag is
set; if a carry occurs, then the carry flag is set, and
SO on.
We should remember, however, our general

rule that it is always best to make tests on the
accumulators only. Also, since most programs are
likely to have some processing between the
increment/decrement instruction and the test
instruction it is unlikely that the condition code
register will remain unchanged between the action
and the test.

If we decide not to step backwards through
the table, it is still a good idea to make the count go
backwards so that we can end the loop at zero. A
point to watch with the auto-decrement
instruction mode is that the decrementing is
performed before the address calculation,
whereas in auto-increment the register is
incremented afterthe address has been calculated.
Thus, if X contains 7 and TABLE begins at $1000,
then the instruction LDA TABLE,X+ will load the
accumulator from address $1007 and then
increment X from 7 to 8. LDA TABLE,-X (note the
minus sign comes before the register name), on
the other hand, will decrement X from 7 to 6 and
then load the accumulator with the value from
address $1006.

_ Stepping through the table backwards, and
keeping the count in the B register for
convenience, our loop will now be:

LDX #64
LDB #64

LOOP LDA TABLE,-X

DECB
BGE LOOP

The first of our two example programs shows a
straightforward loop through a table of eight-bit
values, in which we count the number of negative
values. The count in accumulator B is also used as
the offset from a fixed value in X. The second
program shows both the index registers being used
together, with a zero offset. It makes a copy of a
character string from one location (possibly an
input buffer) to another location where it will be
stored. The string is of unknown length (although
it will be less than 255 bytes) and will terminate
with a Return character. When it is stored, the
Return character will be deleted, and a byte
indicating the string’s length will be put at the
beginning.

THE HOME COMPUTER ADVANCED COURSE 599

Winning Stages
At any stage of the game, the
players may consult the racing
programme (top picture).. This

_ gives details of the race venues, -
and also indicates the prize
money available for specific
races. After the runners have
been chosen for a particular

race, players have the
opportunity to bet on the horse
of their choice (second picture).
Bets must be between £5 and
£500. The horses are then lined

up to wait for the starter’s gun,
_ and the players must sit back
and wait while the race is run.
Our final picture shows the
horses slowing down after —
passing the winning post, with

~ our photographer’s selection
finishing a poor fourth . . .

ODDS-ON FAVOURITE

The Sport of Kings — —or or just a mug 5 game?
Opinions may vary as to the merits of horse
racing, but Salamander Software’s Classic
Racing for the Oric-1 and Atmos home
computers is a clear winner in the flat race
PUAN, stakes.

) Gee RABE Hivea voll HEM eportuNlity to play
the part of a race horse trainer over a season of
meetings. It is a game for one to six players, but if
there are fewer than six people playing, then the
computer makes up the numbers so that each race
will have six runners. The game allows you to
choose the length of the season: a full season
covers 16 race meetings, each consisting of six
races. ‘Those with less stamina may select a shorter
season. The player’s objective is to make as much
money as possible. This may be achieved in two
ways: you can collect prize money by training one
of the first three horses in a race, or you may bet on
the result. You must enter a runner for each race,
but there is nothing to stop you betting on one of
your opponents’ runners if you feel this gives you a
better chance to win money.

Your stable comprises 16 horses, and at the
beginning of the season you have no idea of their
merits. As early season races are for small prizes,
this is the ideal time to experiment by trying your
runners over different distances and in different
ground conditions. This is simply a matter of trial
and error — you must observe how a particular
horse performs under given conditions and plan
your strategy accordingly. This does entail copious
note-taking — each time a horse runs you need to
jot down the distance, the weight carried, the
‘going’ (ground condition), and the result. It’s a
pity that Salamander has failed to include a
routine to print such details out automatically, as
this would save a lot of effort.
Once you have chosen all six of your runners for

the first meeting, you will be given the names of
your opponents’ horses and told the weight each
will be carrying. The computer then allocates odds
against each horse winning. At the start of the
season this appears to be done in an arbitrary
manner but, as the season wears on, horses with
proven track records will start at shorter odds.
Betting is compulsory — stakes must be between
£5 and £500 — and the odds offered can be very
generous. Because a winning (or placed) horse
will collect prize money, it is often profitable to bet
on an oOpponent’s runner, thus giving you two
chances of making a profit.

It is also possible to engineer betting * coups, by ©
entering a horse in races for which it is obviously

600 THE HOME COMPUTER ADVANCED COURSE

unsuitable — for example, a horse that performs —
well over five furlongs in heavy going may be
entered for two successive 1; mile races on firm
ground. It will almost certainly lose ignominiously,
and then may be entered in a more suitable race at
good odds. However, once you have ascertained
the ideal distance and going for a particular horse,
you must resist the temptation to keeprunningitin —
race after race — as in the real-life racing world,
horses need to be rested every so often if they are
to perform at their best.
When all the bets have been placed, the action

switches to the race itself. The horses amble into
position, the starter calls them to order, then the
Oric sound facilities produce a fair approximation
of hoofbeats on turf as the runners head for the
winning post. The race sequence is beautifully
done: horses jostle for position in a realistic way
and the runners are just as prone to erratic
behaviour as their real-life counterparts are. It is
infuriating to have to sit back and watch as your
selection slows to a walk a hundred yards from the
finish while the odds-on favourite glides past!

At the end of the race, winning bets are paid and
the process is repeated for the rest of the card until
the end of the meeting. Each meeting has a track
with different ground conditions and race
distances, If you eventually decide that one of your
horses is not up to standard it may be dropped
from your roster by simply failing to race it at three
successive meetings. This gives you one less factor
to worry about, but it costs you a £1,000 penalty at
each remaining meeting.

Towards the end of the season, the races
become harder to win, as all the players then have
a much better idea of their horses’ capabilities and

_ are less likely to enter runners in races they have no
chance’ of winning. The rewards are
correspondingly greater — the first three home in
the Derby, which is run during the last meeting of
the season, share £90,000 in prize money.

Classic Racing is the most impressive piece of
software yet for the Oric and Atmos. The race
sequences are compelling viewing, and the
strategy involved in planning your season’s
campaign makes this a game that will hold your
interest over repeated playing. It’s possible to win
more than £250,000 over the full season — the
only problem is collecting your winnings!

Classic Racing: For 48K Oric-1/Atmos, £6.95
Publishers: Salamander Software, 17 Norfolk Road,

Brighton BN1 3AA |
Author: Paul Neal

Joysticks: Not required
Format: Cassette

_MAINREGSET __ ALTERNATE REG SET

(GENERAL
PURPOSE _
REGISTERS

INTERRUPT
VECTOR

|

MEMORY
REFRESH

R

ers r sference

SPECIAL
PURPOSE
REGISTERS |

,

ees

Se

B :

7 \

IMAGES PRODUCED ON THE ARTRON 2000 STUDIO COMPUTER; COURTESY OF GRAPHIC PRODUCTS, LONDON (SOROS = DISTRIBUTOR) in oe | :

